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Ansatz for the quantum phase transition in a dissipative two-qubit system
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By means of a unitary transformation, we propose an ansatz to study quantum phase transitions in the ground
state of a two-qubit system interacting with a dissipative reservoir. First, the ground-state phase diagram is
analyzed in the presence of the Ohmic and sub-Ohmic bath using an analytic ground-state wave function that
takes into account the competition between intrasite tunneling and intersite correlation. The quantum critical
point is determined as the transition point from a nondegenerate to a degenerate ground state, and our calculated
critical coupling strength αc agrees with that from the numerical renormalization-group method. Moreover, by
computing the entanglement entropy between the qubits and the bath as well as the qubit-qubit correlation
function in the ground state, we explore the nature of the quantum phase transition between the delocalized and
localized states.
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I. INTRODUCTION

Quantum phase transitions (QPTs) in impurity models with
competing interactions have been a subject of great interest in
recent years. In this work, we consider a two-qubit system
coupled with a dissipative bath, in which the competing
interactions are the intrasite tunneling, the qubit-bath coupling,
and the intersite qubit-qubit interaction. The Hamiltonian for
the interacting system and environment reads [1]

H =
∑
i=1,2

{
−�

2
σx

i − ε

2
σ z

i +
∑

k

gk

2
(b†k + bk)σ z

i

}

+Kσz
1 σ z

2 +
∑

k

ωkb
†
kbk, (1)

where b
†
k (bk) is the creation (annihilation) operator of boson

mode with frequency ωk , and σx and σ z are the Pauli
matrices, where the subscripts denote qubits 1 and 2. �

is the intrasite tunneling, ε is the bias on each qubit, and
K is the Ising-type qubit-qubit interaction. Throughout this
paper we set � = 1. The qubit-bath coupling is denoted by
gk , and the effect of the bath is characterized by a spectral
density J (ω) = ∑

k g2
k δ(ω − ωk) = 2αωsω1−s

c θ (ωc − ω) with
the dimensionless coupling strength α and the high-frequency
cutoff at ωc. The index s accounts for various physical
situations [2,3]: Ohmic s = 1, sub-Ohmic s < 1, and super-
Ohmic s > 1 baths. In this paper, we use a very small bias
ε/ωc � 10−5 to trigger the QPT [1].

The QPT is a ground-state transition when the parameter
of the Hamiltonian changes across some critical point. If the
qubits and bath are decoupled, gk = 0, Hamiltonian (1) can
be diagonalized easily and there is no QPT if we keep a very
small bias ε/ωc � 10−5. The QPT is triggered by competing
interactions: The intrasite tunneling � favors the delocalized
state with 〈σ z

i 〉G ≈ 0, where i = 1,2 and 〈· · · 〉G denotes the
ground-state average. The role of a finite qubit-bath coupling
strength (gk �= 0, or finite α) is to ensure dissipation in the
qubits [2,3], which competes with the tunneling effect and
leads to the possibility of localization with a finite value

of 〈σ z
i 〉G. The QPT in the single-qubit spin-boson model

(SBM) was studied by many authors, and its properties are
well-understood. Various numerical methods were used for
this purpose, such as the numerical renormalization group
(NRG) [4–6], the quantum Monte Carlo (QMC) [7], the
method of sparse polynomial space representation [8], the
extended coherent state approach [9], and the variational
matrix product state approach [10]. In addition, an extension of
the Silbey-Harris [11] ground state has been recently employed
by us [12] to study the QPT of the single-qubit SBM with
Ohmic (s = 1) and sub-Ohmic (s < 1) bath.

For the two-qubit SBM described by Eq. (1), where the
qubits interact with a common bath, the QPT may differ
significantly from that of the single-qubit SBM because the
qubit-bath interaction may induce an effective Ising-type
ferromagnetic coupling between qubits which is superposed
on the original Ising coupling K and leads to a renormalized
Ising coupling (K − V )σ z

1 σ z
2 , where −V is the induced

coupling strength [1]. For the two-qubit SBM with the Ohmic
bath (s = 1), McCutcheon et al. predicted variationally the
quantum critical point (QCP) at αc = 0.5 in the absence of both
bias (ε = 0) and direct Ising coupling (K = 0) [13]. Using
the numerical renormalization group, however, Orth et al. [1]
arrived at αc ≈ 0.15. Recently, Winter and Rieger studied the
quantum phase transition of a multiqubit SBM for K = 0 with
the help of extensive quantum Monte Carlo simulations [14].
They found αc ≈ 0.2 for �/ωc = 0.1 in the presence of an
Ohmic bath.

In this work, we extend the unitary-transformation ap-
proach, which was employed in the single-qubit SBM [15],
to study quantum phase transitions in the two-qubit SBM.
We will show that due to the renormalized Ising coupling,
the QCP of the two-qubit SBM acquires a substantial shift
relative to that of the single-qubit case. In addition, the
qubit-bath entanglement entropy will be calculated to see how
the parameters in Eq. (1)—�, α, and K—compete with each
other and lead to the delocalization-localization transition.

The remainder of the paper is organized as follows. In
Sec. II, the unitary transformation of the Hamiltonian is
introduced, and the ground-state properties are discussed.
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Implications of our results to the quantum phase transition are
elaborated in Sec. III. The entanglement entropy between the
qubits and the bath and the qubit-qubit correlation function are
studied in Secs. IV and V, respectively. Finally, conclusions
are drawn in Sec. VI.

II. UNITARY TRANSFORMATION

To find the ground state, we apply a unitary transformation
to Hamiltonian (1), i.e., H ′ = exp(S)H exp(−S), with the
generator S given by

S =
∑

k

gk

2ωk

(b†k − bk)
[
ξk

(
σ z

1 + σ z
2

) + (1 − ξk)σ0
]
, (2)

where σ0 is a number and ξk is a function of ωk . Compared with
the ground state of Ref. [13], a finite number σ0 is introduced
to take into account the modified bias ε → ε′ (when ε �= 0)
because of the qubit-bath interaction [15–17]. The form of σ0

and ξk will be determined later. After the transformation, we
obtain

H ′ = H ′
0 + Uε + H ′

1 + H ′
2, (3)

H ′
0 = −η�

(
σx

1 + σx
2

)
/2 + (K − V )σ z

1 σ z
2

+
∑

k

ωkb
†
kbk − V + Fσ 2

0 /4, (4)

Uε = −ε′(σ z
1 + σ z

2

)
/2, ε′ = ε + Fσ0, (5)

H ′
1 =

∑
k

gk(b†k + bk)(1 − ξk)
(
σ z

1 + σ z
2 − σ0

)
/2

− η�
∑

k

gk

2ωk

ξk(b†k − bk)
(
iσ

y

1 + iσ
y

2

)
, (6)

H ′
2 = −�

2

(
σx

1 + σx
2

) {cosh(Y ) − η}

− �

2

(
iσ

y

1 + iσ
y

2

) {sinh(Y ) − ηY } , (7)

where F = ∑
k g2

k (1 − ξk)2/ωk and Y = ∑
k gkξk(b†k −

bk)/ωk . In the zeroth-order transformed Hamiltonian H ′
0,

η = exp

{
−

∑
k

g2
k

2ω2
k

ξ 2
k

}
(8)

is the environment dressing of the bare tunneling �, and

V =
∑

k

g2
k

2ωk

ξk(2 − ξk) (9)

is the bath-induced Ising-type interaction. Note that in H ′
0 the

Ising-type interaction is modified by the qubit-bath coupling:
K ′ = K − V . Besides, ε′ in Eq. (5) is the modified bias, which
is related to the number σ0 introduced in our transformation.

With only the Ising-type interaction, the zeroth-order
Hamiltonian H ′

0 may be diagonalized by the following

two-qubit states:

|A〉 = [(u + v)|11〉 + (u − v)|22〉] /
√

2, (10)

|B〉 = [|12〉 + |21〉] /
√

2, (11)

|C〉 = [|12〉 − |21〉] /
√

2, (12)

|D〉 = [(v − u)|11〉 + (v + u)|22〉] /
√

2, (13)

where |1〉 and |2〉 are eigenstates of σx : σx |1〉 = |1〉 and
σx |2〉 = −|2〉, and |12〉 denotes that the state of the first qubit
is |1〉 and that of the second one is |2〉. The parameters u and
v are given by

u = 1√
2

√
1 + (V − K)/W,

(14)
v = 1√

2

√
1 − (V − K)/W,

where W =
√

η2�2 + (V − K)2. Thus, the qubit-dependent
part of H ′

0 may be diagonalized as

H ′
0 = −W (|A〉〈A| − |D〉〈D|)

− (V − K) (|B〉〈B| − |C〉〈C|)
+

∑
k

ωkb
†
kbk − V + Fσ 2

0 /4, (15)

and Uε in Eq. (5) becomes

Uε = −ε′ {(u|A〉 + v|D〉)〈B| + |B〉(u〈A| + v〈D|)} . (16)

In this work, we consider only the case of weak bias with
ε/ωc � 10−5 [1]. At the lowest order of ε, we can diagonalize
H ′

0 + Uε in the space expanded by |A〉 and |B〉,
|A〉 = cos θ |G〉 − sin θ |X〉, |B〉 = sin θ |G〉 + cos θ |X〉,

(17)

where

cos θ = 1√
2

(
1 + W − V + K

�

)1/2

,

sin θ = 1√
2

(
1 − W − V + K

�

)1/2

, (18)

� =
√

(W − V + K)2 + 4ε′2u2.

Then we have

H ′
0 + Uε = −1

2
[W + V − K + �]|G〉〈G|

− 1

2
[W + V − K − �]|X〉〈X|

+ (V − K)|C〉〈C| + W |D〉〈D|
+

∑
k

ωkb
†
kbk − V + Fσ 2

0 /4

−ε′v {(sin θ |G〉 + cos θ |X〉)〈D| + H.c.} . (19)

It is easy to see that if the last term in Eq. (19) is neglected,
the ground state of H ′

0 + Uε is |G〉, and in this work we are
mainly concerned with the ground-state properties. In Eq. (19),
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the coefficient of the transition term |G〉〈D| + |D〉〈G| is
ε′v sin θ ∝ ε′2. In numerical calculations, we use a very small
bias ε/ωc � 10−5 to trigger the QPT [1] while staying in
the range of ε′/ωc � 0.05, and consequently, the transition

term |G〉〈D| + |D〉〈G| can be dropped safely. Fortunately,
the QCP at α ∼ αc falls within this range, and our numerical
calculations are carried out in the range of 0 � α � 1.1αc.

The first-order Hamiltonian H ′
1 can be recast as

H ′
1 =

∑
k

gkb
†
k

{
(1 − ξk)

[
u(cos θ |G〉 − sin θ |X〉)(sin θ〈G| + cos θ〈X|) + H.c. − σ0

2

]

+ η�

ωk

ξk [v(cos θ |G〉 − sin θ |X〉)(sin θ〈G| + cos θ〈X|) − H.c.]

}
+ H.c.

=
∑

k

gk(b†k + bk)(1 − ξk)
[
u sin(2θ )(|G〉〈G| − |X〉〈X|) − σ0

2

]
(20)

+
∑

k

gkb
†
k

[
u(1 − ξk) cos(2θ )(|G〉〈X| + |X〉〈G|) + v

η�

ωk

ξk(|G〉〈X| − |X〉〈G|)
]

+ H.c.,

where H.c. is short for the Hermitian conjugate. Then, if we
choose

σ0 = 2u sin(2θ ) = 4u2ε′

�
, ξk = ωk

ωk + �
, (21)

we have H ′
1|G〉|{0k}〉 = 0, where |{0k}〉 is the vacuum state

of the environment. Now we can see clearly the reason why
we introduce the term (1 − ξk)σ0 in Eq. (2) for the generator
S. Note that the term ξk(σ z

1 + σ z
2 ) in S comes from the

Silbey-Harris-type ansatz where ξk = ωk/(ωk + �) ≈ 1 for
the high-frequency oscillators. However, 1 − ξk = �/(ωk +
�) ≈ 1 for the lower-frequency oscillators, i.e., when σ0 �= 0
the lower-frequency oscillators may play an important role.
We will see in the next section that away from the QPT
(α < αc), we have σ0 ≈ 0, and the dynamic displacement in S,
ξk(σ z

1 + σ z
2 ), dominates; but around the QCP α ∼ αc, σ0 �= 0

and the static displacement (1 − ξk)σ0 comes into play.
Since H ′

1|G〉|{0k}〉 = 0, the ground state of H ′
0 + Uε + H ′

1
is |G〉|{0k}〉 with the ground-state energy,

Eg = −1

2
[W + V − K + �] − V +

∑
k

g2
k

4ωk

(1 − ξk)2σ 2
0 .

(22)

This ground-state energy can also be derived from the
variational principle. Our theory is intended to introduce a
trial ground state of the original Hamiltonian H [Eq. (1)],

|g.s.〉 = exp(−S)|G〉|{0k}〉. (23)

The ground-state energy is given by Eq. (22),

Eg = 〈g.s.|H |g.s.〉 = 〈{0k}|〈G| exp(S)H exp(−S)|G〉|{0k}〉
where it is noted that 〈{0k}|〈G|H ′

2|G〉|{0k}〉 = 0. If σ0 = 0,
our ground state is the same as the variational ground state of
Ref. [13]. But for α � αc, we introduce a finite σ0 that can
be determined by the ground-state variation: ∂Eg/∂σ0 = 0. It
is easy to prove that ∂Eg/∂σ0 = 0 leads to Eq. (21) for σ0.
We will show in the next section that a nonzero σ0 leads to
〈σz〉 �= 0, which determines the QCP.

Furthermore, the ground-state average of σx is

〈
σx

1

〉
G

= 〈
σx

2

〉
G

= 1

2
〈g.s.|(σx

1 + σx
2

)|g.s.〉 = η2�

W
cos2 θ.

(24)

The numerical results of Eg and 〈σx〉G will be shown in the
next section.

III. QUANTUM PHASE TRANSITION

We use the same criterion as used in Ref. [1] to determine
the critical coupling in this work, that is, the emergence of
a nonzero ground-state expectation of σ z as the coupling
strength α exceeds the critical value αc. We note that this
criterion is different from that of Ref. [13], where the vanishing
of the renormalized tunneling η → 0 is used as the criterion.
Since ε′ = ε + Fσ0, Eq. (21) leads to

σ0 = 4u2ε

�

/(
1 − 4u2F

�

)
. (25)

The ground-state average of σ z is

〈
σ z

1

〉
G

= 〈
σ z

2

〉
G

= 1

2
〈G|(σ z

1 + σ z
2

)|G〉
(26)

= u sin(2θ ) = 2ε′u2

�
= σ0

2
.

As ε/ωc < 10−5, Eq. (18) leads to � ≈ W − V + K for the
delocalized phase. In this phase, σ0 ∼ ε is also very small until

1 − 4u2F

W − V + K
= 0, (27)

where a quantum phase transition occurs, and a finite average
〈σ z

1 〉 = 〈σ z
2 〉 emerges. That is, the two-qubit SBM exhibits

two ground-state phases [1]: a delocalized phase in which
〈σ z

1,2〉 → 0 in the limit of ε → 0, and a localized phase with
〈σ z

1,2〉 �= 0 even in the presence of an infinitesimal bias ε = 0+.
Note that σ0 [Eq. (25)] is not divergent at the transition point
and in the localized phase because 1 − 4u2F/� > 0 [� is
defined in Eq. (18)] and ε′ > 0 even if ε = 0+.
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FIG. 1. (Color online) α vs � phase diagram for various bath
types with K = 0 and very weak bias ε/ωc = 10−5. The five curves
from the top down are for s = 1, 0.9, 0.75, 0.5, and 0.25, respectively.
The blue dots indicate the positions where we cross the phase
boundary for calculating the critical exponents β ′ in the fifth column
of Table I.

The critical coupling strength at the QCP αc can be deter-
mined by Eq. (27) because F ∝ α. For effectively ferromag-
netic coupling (K − V < 0) in the zeroth-order Hamiltonian
H ′

0 of Eq. 4, it is found that W − V + K ≈ 0.5η2�2/(V − K)
in the scaling limit of � � ωc, and to the lowest order of �/ωc,
we have

F = 2αω1−s
c

∫ ωc

0

(W − V + K)2ωs−1dω

(ω + W − V + K)2

∼ 2παωc(1 − s)

sin[π (1 − s)]

{
W − V + K

ωc

}s

. (28)

Then, Eq. (27) becomes

1 − 4παc(1 − s)(W + V − K)

sin[π (1 − s)]W

(
W − V + K

ωc

)s−1

= 0.

(29)

When K < V and � � ωc, W − V + K ≈ 0.5η2�2/(V −
K) and (W + V − K)/W ≈ 2. Then, it is easily seen that
αc = 1/8 + O(�/ωc) for s = 1, and αc = 0 + O(�/ωc) for
s < 1. In the super-Ohmic regime of s > 1, αc → ∞, and
the system is always in the delocalized state in the limit of
ε → 0. Our estimation is comparable to those of Ref. [1]:
αc = 0.15 + O(�/ωc) for s = 1 and αc = 0 + O(�/ωc) for
s < 1. Moreover, it is also interesting to list the prediction of
Ref. [13]: αc = 0.5 for s = 1.

For finite values of �/ωc, the QCP can be determined by
Eq. (27). Figure 1 is the α-versus-� phase diagram for various
values of s with K = 0 and very weak bias ε/ωc = 10−5. One
can see that in the scaling limit of �/ωc → 0, αc → 0.125
for the Ohmic bath s = 1, and αc → 0 for the sub-Ohmic bath
s < 1. Meanwhile, αc increases with tunneling � because a
larger tunneling strength favors the delocalized state.

Figure 2 is the α-versus-K phase diagram for various
values of s with �/ωc = 0.1 and very weak bias ε/ωc =

(a)

(b)

(c)

FIG. 2. (Color online) (a) α vs K phase diagram for various bath
types with �/ωc = 0.1 and very weak bias ε/ωc = 10−5. The five
curves from the top down are for s = 1, 0.9, 0.75, 0.5, and 0.25,
respectively. The blue dots indicate the positions where we cross the
phase boundary for calculating the critical exponents in the second (δ),
third (γ ), and fourth (β) columns of Table I. The red circles indicate
the positions where we cross the phase boundary for calculating the
critical exponents in the sixth column (ζ ) of Table I. The comparisons
of our result and the NRG one for s = 1 and 1/2 are shown in (b)
and (c), respectively. Different red symbols stand for the NRG data
in Ref. [1]. The black curves correspond to our calculated data by our
ansatz. The short-dash-dotted lines in (b) and (c) indicate Kr = 0.
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FIG. 3. (Color online) (a) The solid line is the difference between
our calculation of the ground-state energy and that of Ref. [13] for
s = 1, K = 0, �/ωc = 0.1, and ε/ωc = 10−5. The dash-dotted line is
the calculated value of the parameter σ0. The arrow in the bottom right
corner indicates the transition point αc ≈ 0.1338. (b) The ground-
state averaged 〈σ x〉 and the renormalized bias ε ′ as functions of α for
s = 1, with K = 0, �/ωc = 0.1, and ε/ωc = 10−5. The solid line is
our result for 〈σ x〉 and the dashed line is that of Ref. [13]. The arrow
in the bottom right corner indicates the transition point αc ≈ 0.1338.

10−5, which is similar to Figs. 2 and 3 in Ref. [1]. As the
effective Ising interaction in H ′

0 is (K − V )σ z
1 σ z

2 , a positive
(antiferromagnetic) K reduces the bath-induced interaction
−V , while a negative (ferromagnetic) K enhances it. This
explains that in the phase diagram, a positive K favors the
delocalized phase while a negative K discourages it. One can
see that the phase boundary depends on K very weakly for the
ferromagnetic case (K < 0), while for the antiferromagnetic
case (K > 0) the delocalized region extends to a larger αc, and
the asymptotic line of the phase boundary for a larger K > 0 is
given by Kr = K − α�c/s = 0 (Kr is the renormalized Ising
coupling defined by Ref. [1]). We present a comparison of
the NRG results and ours in Figs. 2(b) (Ohmic bath) and 2(c)
(sub-Ohmic bath). For K < 0, the phase boundary of αc for
the Ohmic bath is weakly dependent on K , which is the same
as the NRG results. However, the boundary, located at αc =
1/8 + O(�/ωc), is also weakly dependent on �, a result at
variance with the NRG counterpart of αc = 0.15 + O(�/ωc).
For the sub-Ohmic bath, our calculated αc is in good agreement
with that of the NRG approach for the whole range of K values.

FIG. 4. The log-log plot of the relation between 〈σ z〉 and ε/ωc

for various bath types with fixed �/ωc = 0.1, K = 0 at their
corresponding critical coupling strengths αc. s = 1, 0.9, 0.75, 0.5,
and 0.25 (from top to bottom).

Figure 3(a) shows the difference in the ground-state energy
between our calculation and that in [13] in the presence of an
Ohmic bath (s = 1). For the delocalized phase α < αc, our Eg

is the same as that of Ref. [13]. However, above the transition
point α � αc, the lower ground-state energy indicates that the
ansatz of this work is a better one for the real ground state. As
shown in the figure, the calculated value of the parameter σ0 is
nearly zero for the delocalized phase (α < αc), but it increases
quickly above the transition point.

Figure 3(b) shows the ground-state averaged 〈σx〉 and the
renormalized bias ε′ as functions of α for an Ohmic bath.
One can see that our calculated average 〈σx〉 [see Eq. (24)] is
the same as that of Ref. [13] for α < αc, and in this regime,
the renormalized bias ε′ ≈ ε is very small, while for α � αc,
ε′ increases quickly. Since we are mainly interested in the
QCP, our calculation is restricted to the parameter regime of
0 < α � 1.1αc, where ε′/ωc < 0.05 and the transition term
|G〉〈D| + |D〉〈G| in Eq. (19) can be safely neglected.

Equations (25) and (26) are used to get the ground-state
averaged 〈σ z〉 = 〈σ z

1 〉 = 〈σ z
2 〉 as a function of ε, α, �, or K .

As critical exponents are the most interesting QPT properties,
we first consider a critical exponent δ defined by

〈σ z〉 ∼ ε1/δ, (30)

where α, �, and K are kept fixed at their critical values.
Figure 4 shows a log-log plot of the relation between 〈σ z〉
and ε/ωc for �/ωc = 0.1, K = 0, and α = αc. A series of
s values are taken. The filled blue dots in Fig. 2(a) indicate
the transition points in the phase diagram where we cross
the phase boundary to calculate the curves in Fig. 4. One
can see the power-law scaling over more than two orders of
magnitude, and the critical exponent δ can be determined from
simply fitting the slope. The fitting results are listed in the
second column of Table I, and they are in the close vicinity of
δ = 3.
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TABLE I. Critical exponents of different bath types s.

s δ γ β β ′ ζ

0.25 3.0009 0.99999 0.49695 0.49988 0.49981
0.5 3.0015 1.00009 0.49848 0.49981 0.49979
0.75 3.0036 1.00041 0.49882 0.49971 0.49980
0.9 3.0088 1.00004 0.49864 0.49960 0.49979
1 3.0396 0.99999 0.49538 0.49912 0.49965

Second, the static susceptibility is related to the critical
exponent γ ,

χ = 〈σ z〉
ε

∣∣∣∣
ε→0

∼ 1

(αc − α)γ
, (31)

where � and K are kept fixed. Figure 5 shows a log-log plot
of the relation between χ and αc − α for various values of s

(the transition points are again the filled blue dots in Fig. 2(a)).
There is a power-law scaling, and the critical exponent γ can
be determined from simply fitting the slope. The fitting results,
which are listed in the third column of Table I, are found to be
quite close to the value of γ = 1.

Another three critical exponents are defined as follows:

〈σ z〉 ∼ (α − αc)β, (32)

〈σ z〉 ∼ (�c − �)β
′
, (33)

〈σ z〉 ∼ (Kc − K)ζ . (34)

They can be determined in a similar way, that is, by simply
fitting the slope in a log-log plot, and the results are listed in
the fourth (transition points are filled blue dots in Fig. 2(a)),
fifth (transition points are filled blue dots in Fig. 1), and
sixth (transition points are red circles in Fig. 2(a)) columns of
Table I. All these fitted exponents are found to be close to 1/2.

FIG. 5. The log-log plot of the relation between χ and 1/(αc −
α)γ for various bath types with fixed �/ωc = 0.1 and K = 0. Five
values of the bath spectral exponent is chosen: s = 1, 0.9, 0.75, 0.5,
and 0.25 (from top to bottom).

We have checked that these extracted exponents are
independent of the position in the phase diagram where the
phase boundaries are crossed. We note that our transformed
Hamiltonian H ′

0 + Uε is a two-site Ising model in both the
transverse (η�) and longitudinal (ε′) field. For the lattice Ising
model (one-, two-, and three-dimensional) in a transverse field,
it is well known that there is a quantum phase transition at some
critical value of the transverse field [18]. It was proved that
the critical exponents of the d-dimensional Ising model in a
transverse field are the same as those of the classical Ising
model (without the transverse field) in (d + 1) dimension. In
the mean-field approximation, the critical exponents of the
quantum Ising model (in a transverse field) are δ = 3, γ = 1,
and β = 1/2, which are independent of the lattice dimension
and the coordination number, and at variance with those from
the exact analytic solution (for one dimension) and numerical
exact solutions (Monte Carlo, renormalization group, etc.).
Note that these mean-field critical exponents are the same as
our values for the two-qubit SBM. This is an indication that
our theory for the QPT of the two-qubit SBM is a mean-field
theory, that is, the effect of quantum fluctuations has been
taken into account by a self-consistent mean field.

Here we explain briefly how our mean-field approximation
works. The two-qubit system and the heat bath are decoupled
by the unitary transformation, and in the generator S of the
transformation we introduce two “mean-field” displacement
of oscillators: (i) the dynamic displacement ξk(σ z

1 + σ z
2 )

related to the high-frequency oscillators since ξk ≈ 1 for
large ωk , which modifies the original tunneling � → η�

[Eq. 8] and renormalizes the Ising coupling K → K − V

[Eq. 9]; (ii) the static displacement (1 − ξk)σ0 related to the
lower-frequency oscillators as 1 − ξk ≈ 1 for ωk → 0, which
leads to the modified bias ε → ε′ [Eq. 5]. As shown above,
self-consistent calculations have been carried out to determine
these modified parameters and to include the effect of the
quantum fluctuations.

Moreover, all the critical exponents listed in Table I are
independent of the bath index s, and this is a feature similar to
the mean-field exponents of the quantum Ising model, which
are independent of the dimension and the coordination number.
We note that, for s = 1/2, our critical exponents are the same
as the scaling analysis result of Ref. [1].

As for the critical exponents, our results come from a self-
consistent mean-field ground state. It leads reasonably to s-
independent plain mean-field critical exponents. In contrast,
the critical exponents of the mean-field analysis in Ref. [1]
are based on the quantum to classical mapping of the spin-
boson model to the one-dimensional classical Ising model with
long-range interaction Jij = J/|i − j |1+s , which results in the
s-dependent critical exponents. On the other hand, as pointed
out in Ref. [1], the NRG is not well suited to describe the
system close to the transition for s < 1/2, and the calculation
is therefore restricted to s � 1/2. It is our belief that it is
not accidental that the critical exponents ζ (s = 1/2) = 1/2
and β(s = 1/2) = 0.5 of the NRG are equivalent to those of
our theory. Recent quantum Monte Carlo simulation yielded
classical exponents of γ = 1 and β = 0.5 for s < 1/2 in a
multiqubit SBM [14], but for s > 1/2 their critical exponents
are dependent on s while ours are independent of s.

062115-6



ANSATZ FOR THE QUANTUM PHASE TRANSITION IN A . . . PHYSICAL REVIEW E 91, 062115 (2015)

IV. THE ENTANGLEMENT ENTROPY

The reduced system density matrix ρS is given by tracing
the total (system + bath) density operator over the boson
bath: ρS = TrB[ρSB ]. If the ground-state reduced density
matrix of the two-qubit system ρS is known, the von
Neumann entanglement entropy can be calculated from ρS :
E = −Tr[ρS log2 ρS] [1,19]. From the trial ground state (23),
we have

ρSB = |g.s.〉〈g.s.| = exp(−S)|G〉|{0k}〉〈{0k}|〈G| exp(S).

(35)

Thus,

ρS = TrB{exp(−S)|G〉|{0k}〉〈{0k}|〈G| exp(S)}. (36)

Note that there are both spin operators σ z and bosonic
operators b

†
k − bk in S. For the trace operation over the

bath (TrB), we use Eqs. (17), (18), (10), (11), and |1〉 =
(|↑〉 + |↓〉)/√2, |2〉 = (|↑〉 − |↓〉)/√2 [where the state |↑(↓)〉
is the eigenstate of σ z: σ z|↑(↓)〉 = +(−)|↑(↓)〉] to express |G〉
as

|G〉 = cos θ |A〉 + sin θ |B〉 = 1√
2
{(u cos θ + sin θ )|↑↑〉 + (u cos θ − sin θ )|↓↓〉 + v cos θ [|↑↓〉 + |↓↑〉]}. (37)

Then,

exp(−S)|G〉 = 1√
2

(u cos θ + sin θ ) exp(−S+)|↑↑〉

+ 1√
2

(u cos θ − sin θ ) exp(−S−)|↓↓〉 + v cos θ exp(−S0)
1√
2

[|↑↓〉 + |↓↑〉], (38)

where

S+ =
∑

k

(
fk + gkξk

ωk

)
(b†k − bk), S− =

∑
k

(
fk − gkξk

ωk

)
(b†k − bk), S0 =

∑
k

fk(b†k − bk),

(39)

and fk = gk(1 − ξk)σ0/2ωk . Now there are no system operators in S+, S−, and S0 so that the cyclic properties of the trace can be
used for trace operation in Eq. (36),

ρS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2 (u cos θ + sin θ )2 vη√

2
cos θ (u cos θ + sin θ ) 1

2 (u2 cos2 θ − sin2 θ )η4 0

vη√
2

cos θ (u cos θ + sin θ ) v2 cos2 θ
vη√

2
cos θ (u cos θ − sin θ ) 0

1
2 (u2 cos2 θ − sin2 θ )η4 vη√

2
cos θ (u cos θ − sin θ ) 1

2 (u cos θ − sin θ )2 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

Because of the decoupling of the “dark” state 1√
2
[|↑↓〉 −

|↓↑〉], all elements of the density operator ρS in the bottom
row and the right column are equal to 0. If we know the
three eigenvalues of the upper left 3 × 3 submatrix, then the
entanglement entropy is

E = −
3∑

i=1

λi log2 λi, (41)

where λi (i = 1,2,3) are the eigenvalues of the 3 × 3 subma-
trix. As the trace of the density operator is TrSρS = 1, it is
easy to prove that 0 � E � 2 [1]. E = 0 indicates the absence
of entanglement between the qubits and the bath.

The eigenvalues of ρS can be calculated numerically. The
entanglement entropy E for the Ohmic case of s = 1 is shown
in Fig. 6(a) as a function of the coupling strength α for
three values of tunneling � (we set K = 0 and ε/ωc = 10−6).
When α = 0, there is no entanglement between qubits and the
environment and E = 0. The entanglement entropy increases

with increasing α in the delocalized phase, reaches a plateau,
and then drops quickly to zero at the transition point α = αc.
[Here and in the following figures, our calculation is restricted
to the range 0 < α � 1.1αc, because in this range ε′/ωc <

0.05 and the transition term |G〉〈D| + |D〉〈G| in Eq. (19) can
be safely dropped.] As pointed out in Ref. [1], the plateau
indicates that coherence is lost prior to localization, that is, it
shows that the system is in the coherent to incoherent crossover
before final trapping in the localized phase.

Figure 6(b) displays the entanglement entropy E for the sub-
Ohmic case of s = 1/2 and three values of tunneling � (we
set K = 0 and ε/ωc = 10−6). Obviously, for the sub-Ohmic
bath the entanglement entropy reaches a sharp peak right at
the transition point, and there is no plateau corresponding to
the coherent to incoherent crossover.

Figure 6(a) corresponds to the case of K = 0, so the
renormalized Ising coupling is −V σz

1 σ z
2 . In Fig. 7, we

check the E versus α relation for finite values of the Ising
coupling K (s = 1, � = 0.1, ε/ωc = 10−6). From Fig. 7(a),
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FIG. 6. (Color online) (a) The entanglement entropy E as a
function of the coupling strength α for the Ohmic case of s = 1 with
different tunneling � (K = 0, ε/ωc = 10−6). (b) The entanglement
entropy E as a function of the coupling strength α for the sub-Ohmic
case of s = 1/2 with different tunneling � (K = 0, ε/ωc = 10−5).

we observe that as K changes from ferromagnetic (K < 0) to
antiferromagnetic (K > 0, note that the renormalized Ising
coupling is K − V ), the width of the plateau is reduced
considerably, and a spike emerges instead for large positive
values for K � 0.25ωc. This indicates that the delocalized-
to-localized phase transition occurs right next to the regime
where spin dynamics is coherent [1], and coherence is lost
in a manner similar to the sub-Ohmic case of Fig. 6(b). In
Figs. 7(b) and 7(c), we show the comparison of the NRG
results with ours. For several values of K , the slopes of our
scaled data are similar to those of the NRG approach.

Figure 8 shows the entanglement entropy E as a function
of α for various values of Ising coupling K in the sub-Ohmic
regime of s = 1/2 (we set � = 0.1 and ε/ωc = 10−6). There is
a sharp peak at the transition point for both the ferromagnetic
(K < 0) and the antiferromagnetic (K > 0) Ising coupling,
but the width of the peak of the ferromagnetic coupling
is much smaller than that of the antiferromagnetic one. In
Figs. 8(b), 8(c), and 8(d), we show the comparison of the
NRG results with ours. For several values of K , it is found that

(b)

(c)

FIG. 7. (Color online) (a) The entanglement entropy E as a
function of α for various Ising coupling strengths K in the Ohmic
bath s = 1 (� = 0.1, ε/ωc = 10−5). The comparisons of the scaled
entanglement entropy vs (α − αc)/αc for K = 0 and 4K = ωc are
shown in (b) and (c), respectively.

the slopes of our scaled data agree well with those of the NRG
approach.

In Fig. 9, we show the E versus α relations for s = 1/4,
1/2, 3/4, 9/10, and 1 (from left to right). Here we set the Ising
coupling K = 0. One can see that with increasing index s, a
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(b)(a)

(d)
(c)

FIG. 8. (Color online) (a) The entanglement entropy E as a function of α for various Ising coupling strengths K in a sub-Ohmic bath
s = 1/2 (� = 0.1, ε/ωc = 10−5). The comparisons of the scaled entanglement entropy vs (α − αc)/αc for 4K/ωc = −0.5, 0, and 0.5 are
shown in (b), (c), and (d), respectively.

sharp peak (s = 1/4) at the transition point changes gradually
(with s = 1/2, 3/4, 9/10) to a plateau (s = 1) on the left side
of the peak.

V. QUBIT-QUBIT CORRELATION

In this section, in order to investigate the correlation
between the two qubits mediated by the common bath and the

FIG. 9. The entanglement entropy E as a function of α for
different bath indices s = 1/4, 1/2, 3/4, 9/10, and 1 (from left to
right).

effects of direct Ising coupling, we calculate the qubit-qubit
correlation function of the ground state. It is defined as

C12 = 〈
σ z

1 σ z
2

〉 − 〈
σ z

1

〉〈
σ z

2

〉
, (42)

where 〈•〉 = 〈g.s.| • |g.s.〉. By the reduced density matrix
Eq. (40), we immediately arrive at

C12 = (u2 − v2) cos2 θ + sin2 θ − 1
4σ 2

0 . (43)

In Fig. 10, we show the correlation function C12 for different
bath indices s. In Figs. 10(a) and 10(b), we show our calculated
results and the data of the QMC simulations for K = 0 [14].
Due to the coupling of the qubits and bath, there is an indirect
Ising coupling −V . The function 〈σ z

1 σ z
2 〉 is nonzero even

in the delocalized phase due to the effective ferromagnetic
interaction mediated by the common bath. It is obvious that
the fluctuation increases with an increase in the dissipative
coupling strength prior to the onset of the QPT. At the critical
point αc, C12 reaches the maximum value, which means that
the QPT occurs. After the coupling strength exceeds αc, C12

decreases rapidly. By comparison, our results are in good
agreement with the QMC results, especially for the deep
sub-Ohmic bath s � 1/2. In Fig. 10(a), for the Ohmic bath,
our results of the delocalized phase agree well with the QMC
data [14]. In Fig. 10(b), it is found that the transition in our
results occurs at αc = 0.133 while that of the QMC happens
at α ≈ 0.175.

In Figs. 10(c) and 10(d), we show the effects of direct Ising
coupling K on the correlation function for s = 1 and 1/2,
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(a) (b)

(d)(c)

FIG. 10. (Color online) (a) The qubit-qubit correlation function C12 as a function of α for Ising coupling K = 0 with different bath indexes
s = 0.25, 0.5, 0.75, and 1 (� = 0.1, ε/ωc = 10−5). The quantum Monte Carlo data in Ref. [14] are shown for comparison. (b) C12 vs α for
K = 0 in the Ohmic case. (c) C12 as a function of α with different values of the Ising coupling K for s = 1 . (d) C12 as a function of α with
different values of the Ising coupling K for s = 1/2. The critical value αc corresponding to the peak of the curves will rise with increasing K .

respectively. For the Ohmic case, the C12 has the character of
a plateau at a weaker coupling strength in the ferromagnetic
case K < 0, while for larger values of K the plateau shrinks to
a peaklike structure. It is clearly seen that the peak value of C12

for the antiferromagnetic situation is much higher than those
for the ferromagnetic case. For the sub-Ohmic case s = 1/2,
the C12 exhibits the character of a cusp for any K , similar to
the entanglement entropy in Fig. 8(a).

VI. DISCUSSION AND CONCLUSION

We have proposed an ansatz to study a two-qubit system
interacting with a dissipative environment in the ground state,
and it is shown that, as a result of the competition between
the intrasite tunneling and the intersite correlation, a quantum
phase transition separating the delocalized phase from the
localized one may occur at some critical coupling constant αc.
By calculating the ground-state entanglement entropy between
the qubits and the bath as well as the qubit-qubit correlation
function, we have explored the nature of the QPT between the
delocalized and localized state.

The same criterion as that used in Ref. [1] is used to deter-
mine the critical coupling in this work, that is, the emergence
of a nonzero ground-state expectation of 〈σ z〉 as the coupling

α increases across some critical point αc. For the two-qubit
system in an Ohmic bath, we get αc = 1/8 + O(�/ωc), which
is quite close to the NRG result αc = 0.15 + O(�/ωc) [1]. In
contrast, the criterion used in Ref. [13] is the vanishing of
the renormalized tunneling η → 0, which leads to αc = 0.5
for the two-qubit system in an Ohmic bath. However, for the
single-qubit system in an Ohmic bath, both the criteria η → 0
and 〈σ z〉 �= 0 give the same critical value αc = 1, at least in
the scaling limit �/ωc → 0 (Refs. [2–12]). This difference
comes from the two-qubit correlation and the renormalized
Ising coupling V [Eq. 9], which shift the QCP of the two-qubit
SBM substantially as compared to that of the single-qubit
case.

An alternative unitary transformation has been utilized, in
which a ωk-dependent function ξk is introduced and its func-
tional form is determined by setting to zero the matrix element
of H ′

1 between the ground state and the lowest-lying excited
state of H ′

0 + Uε . Then we get the ground state |G〉|{0k}〉 for the
transformed Hamiltonian H ′

0 + Uε + H ′
1 (H ′

1|G〉|{0k}〉 = 0)
with the ground-state energy Eq. (22). Generally speaking,
our approach is to decouple the two-qubit system from the
heat bath by the unitary transformation with the generator S

[Eq. 2]. In S we introduce two “mean-field” displacements
of oscillators: (i) The dynamic displacement ξk(σ z

1 + σ z
2 )
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related to the high-frequency oscillators since ξk ≈ 1 for
large ωk , which modifies the original tunneling � → η�

[Eq. 8] and renormalizes the Ising coupling K → K − V

[Eq. 9]. (ii) The static displacement (1 − ξk)σ0 related to the
lower-frequency oscillators as 1 − ξk ≈ 1 for ωk → 0, which
leads to the modified bias ε → ε′ [Eq. 5]. Self-consistent
mean-field calculations have been carried out to determine
these modified parameters, and the effect of the quantum
fluctuations is included. Our calculated critical exponents are
the same as the mean-field critical exponents of the Ising model
in a transverse field.

In our work, the unperturbed part of the transformed Hamil-
tonian H ′

0 + Uε can be diagonalized exactly, but nonetheless
it contains the essential physics of the two-qubit SBM. For the
ground state, the first-order Hamiltonian H ′

1 can be neglected
because H ′

1|G〉|{0k}〉 = 0. The main approximation in our
treatment is the omission of H ′

2 [Eq. 7]. The reason to justify
this approximation is that, since 〈{0k}|〈G|H ′

2|G〉|{0k}〉 = 0

(because of the definition for η) [Eq. 8], the terms in H ′
2

are related to the multiboson nondiagonal transitions (such
as bkbk′ and b

†
kb

†
k′). The contributions of these nondiagonal

terms to the ground-state energy are O(g2
kg

2
k′) and higher.

For the ground state, the contribution from these multiboson
nondiagonal transitions may be dropped safely. We have made
substantial arguments in our previous publication [15] that this
omission is justified.
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